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Diffuse scattering reveals correlated
motions
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Computational analysis reveals
connected residue networks
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This is precisely what diffuse
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...if signal to noise was infinite
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Bragg crystallography yields
degenerate models
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Diffuse scattering patterns are non-
degenerate!




Diffuse scatter can be collected on a
variety of detector platforms

Advanced Light Source Stanford Synchrotron Radiation
Charge-coupled device area detector Lightsource
PILATUS 6m detector

Alternate collection of Bragg frames and
diffuse frames (1°/0.1° oscillation) Simultaneous collection of Bragg/
diffuse frames (fine phi slicing)
Crystal translation during rotation
Crystal translation during rotation




Diffuse scatter maps are created using
LUNUS

Wall et al (1997)



CypA diffuse scatter map
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Phenix calculates diffuse scatter maps
from structural ensembles

05 s N
)
e
(8
P , . ]

"; ;} ", ‘ "'\‘\

UCSF CHIMERA ¥ 07
an Extensible Molecular

Modeling System

3D diffuse
ensemble map

Structural Get_struct_fact_from_md.py

“ . -
3 " ] - ¢ -
% , |
» 4 /
. |"{‘ -ril - — —-
S0 2,
/ > (o8 :
L [ = A




Normal mode motions in CypA unit cell

intensity

produce unique diffuse

http://lorentz.immstr.pasteur.fr/nomad-ref.php
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Normal mode motions in CypA unit cell
produce unique diffuse intensity




Next step: statistical comparisons

Grey: CypA experimental data
Green: Normal mode simulation
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Next step: statistical comparisons

Grey: CypA experimental data
Green: Normal mode simulation
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How should we compare maps? R factor?
Pearson Correlation Coefficient?
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Next step: statistical comparisons
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Diffuse scattering might probe links
between correlated side chain
motions with enzyme catalysis
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NMR reveals protein conformational
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Proteasome allostery allows for
multiple functions

Cell Cycle Cell homeostasis
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Immune Response Cell signaling

Splettstoesser (2006)
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NMR reveals protein conformational

exchange in T20S proteasome
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NMR reveals protein conformational

exchange in T20S proteasome

12.2 . 20.1 —
016451| 21.0f P N— ‘///.\ — BT1Apro
j o %) | ) | |- WT+ch
21.21 /& 2094 \Y 20.3] = L +
[ 21.3 ‘?.-l'\ 21.04 \ -204 @ — WT
i |2 %ﬁ)- "'?3 "|— alL81A
214 ) 1212aV107yt)} 205 \a Boy1h|— aL81V
1300 =7 0084 091 0.7$ I-?.Z;p(ln:;) (1).‘64 061 |— WT+11S
2.0 188 . [P8257
gm.a L 224 00 | 256 @
214 r 22,6 19.2 | 25.8.
Qo1 L
@ <k 22.8 19.4 /- 2- 26.00 | L
. o ’Y \
2181 \UBL55 4,070 085 080075 262 b I
07150710 0.05 H (ppm) 1H (ppm) e
H (ppm) 1H (ppm)

=)

N

! Y
\ ‘)’

2 ShCH
\ —~

o Shy

DY

al81A
al81lVv
WT+11S

BT1Apro
BT1C
WT+chl



T20S mutations alter degradation
product ratios

Ruschak and Kay (2012)
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Diffuse scattering can help us determine the
mechanism of the T20S allosteric network



T20S proteasome lacks high-
resolution crystal data
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Significant diffuse scattering at mid/
low resolutions for proteasome
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Significant diffuse scattering at mid/low
resolutions for macromolecular machines

Photosystem Il (4.2A)
Sauter group (2013)



Future T20S investigation requires
data and motional models

* We need complete diffuse maps of WT, L81A/V proteasome
* Maps will be fit with predictive models of proteasome allostery
(TLS)
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Summary

Correlated protein motion underscores enzymatic function
—  Conversion of sidechains is rate-limiting for catalysis
— Can be determined by room temperature crystallography, CONTACT

Allosteric mechanism transmits data 80A in T20S proteasome
—  Co-linear chemical shift perturbations suggest correlated motions

Diffuse scatter is present at low to medium resolution

—  Currently we can collect data at ALS, SSRL

—  How can we merge data across multiple crystals?

—  What'’s the effect of cryo-cooling?
Diffuse scatter distinguishes between models with identical
Bragg data

— How do we go from diffuse intensity to models of motion?
— What are the different motions on different length-scales?



